

your st FG.

The Solution of a Special Set of Hermitian Toeplitz Linear Equations

by

David C. Farden

ONR Technical Report #12

August 1975

Prepared for the Office of Naval Research under Contract N00014-75-C-0518

L. L. Scharf and M. M. Siddiqui, Principal Investigators

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for public release; distribution unlimited.

DDC OCT 21 1976

The Solution of a Special Set of Hermitian Toeplitz Linear Equations 9 Technical rept. David C. Farden Electrical Engineering Department Colorado State University Fort Collins, Colorado 80523 TR-12(ONR) January 1975 Submitted to ACM Transactions on Mathematical Software This work was supported by the Office of Naval Research under Grants N00014-67-A-0299-0019, and N00014-75-C-0518, and the Naval Undersea Center under Contracts N66001-74-C-0035 and N66001-75-C-0224. MARINISHTICH ANAMADILITY CODES AVAIL BEG/OF SPECIAL

ABSTRACT

The solution of a set of a linear equations $L_m = d_m$, where L_m is an mth order Hermitian Toeplitz matrix and the elements of d_m possess a Hermitian symmetry, is considered. A specialized algorithm is developed for this case which solves for s_m in approximately $1.5m^2$ "operations," whereas the Hermitian case of an algorithm developed by Zohar solves for s_m in approximately $2m^2$ "operations." An "operation" is used here to denote one addition and one multiplication. A further reduction in computational requirements is shown in case L_m and d_m are real. As with Zohar's algorithm, the specialized algorithm requires that all principal minors of L_m be nonzero.

KEY WORDS AND PHRASES: Linear algebra, linear equations, Toeplitz matrix, computer programming

CR CATEGORIES: 5.14, 5.25

1. Introduction

Consider the set of linear equations

$$L_{m m}^{s=d}_{m}.$$
 (1)

Zohar [1] makes use of the Trench algorithm [2], [3] to develop an efficient algorithm for solving (1) when s_m , d_m are mxl matrices and L_m is a non-Hermitian mth-order Toeplitz matrix. In this paper, an efficient algorithm is developed for solving (1) when L_m is a Hermitian Toeplitz matrix and d_m satisfies

$$\mathbf{d}_{\mathbf{m}}^{\star} = \hat{\mathbf{d}}_{\mathbf{m}}$$
, (2)

where the symbol $\hat{}$ is used to denote the reversed ordering of the elements of d_m , i.e., $(\hat{d}_m)_{1,1} = (d_m)_{m+1-1,1}$ and * denotes complex conjugate. Such a specialized case can arise, for example, in the design of digital filters, as discussed in [4]. The following example serves to illustrate how such a system of equations can arise.

EXAMPLE. Let $\alpha(t)$, $\beta(t)$, $\gamma(t)$ be jointly wide-sense stationary complex-valued stochastic processes with $\alpha(t)=\beta(t)+\gamma(t)$, where $E\{\beta(t)\gamma^*(s)\}=0$ for all real t and s and $E\{\cdot\}$ denotes statistical expectation. On the basis of the observation vector $\mathbf{a}_{\mathbf{m}}(\mathbf{k})$, $\mathbf{a}_{\mathbf{m}}(\mathbf{k})=[\alpha(\mathbf{k}) \quad \alpha(\mathbf{k}-1)\cdots\alpha(\mathbf{k}-\mathbf{m}+1)]$, where the symbol $\tilde{}$ denotes matrix transpose, it is desired to compute a linear minimum mean-square error (MMSE) estimate of $\beta(\mathbf{k}-\mathbf{p})$, i.e., it is desired to minimize the quantity $E\{|\tilde{\mathbf{s}}_{\mathbf{m}}\mathbf{a}_{\mathbf{m}}(\mathbf{k})-\beta(\mathbf{k}-\mathbf{p})|^2\}$ with respect to $\mathbf{s}_{\mathbf{m}}$. It is easily shown that the desired solution, $\mathbf{s}_{\mathbf{m}}$, satisfies (1), with $\mathbf{L}_{\mathbf{m}}=E\{\mathbf{a}_{\mathbf{m}}^*(\mathbf{k})\mathbf{a}_{\mathbf{m}}(\mathbf{k})\}$ and $\mathbf{d}_{\mathbf{m}}=E\{\beta(\mathbf{k}-\mathbf{p})\mathbf{a}_{\mathbf{m}}^*(\mathbf{k})\}$. Since $\alpha(t)$ is wide-sense stationary, $\mathbf{L}_{\mathbf{m}}$ is a Hermitian Toeplitz matrix. With $\mathbf{p}=(\mathbf{m}+1)/2$, it is easily seen that (2) is satisfied since $\beta(t)$ and $\gamma(t)$ are jointly wide-sense

stationary ..

A useful consequence of the assumptions that $d_m^* = d_m$ and $L_m^* = \tilde{L}_m$ is that $s_m^* = s_m^*$. Define E_m to be the mxm exchange matrix of Zohar [3], i.e., $E_m = s_m^* = s_m^*$ for any mxl matrix s_m^* . Note that $E_m = s_m^* = s_m^*$, where I_m is the mxm identity matrix. Since I_m is persymmetric [3], $E_m I_m^* = I_m^*$. Since $d_m = d_m^*$, from (1) we have $E_m I_m^* = I_m^* = I_m^*$, so that $I_m^* = I_m^* = I_m^* = I_m^*$, i.e., $s_m^* = s_m^*$.

The specialized algorithm developed in Section 3 of this paper solves (1) with d_m satisfying (2) in approximately $1.5m^2$ complex "operations," whereas the Hermitian case of Zohar's algorithm [1] uses approximately $2m^2$ complex "operations." An "operation" is used here to denote one addition and one multiplication. In case L_m , d_m (and hence m) are real, the results of Section 3 can be used to solve (1) in approximately $1.25m^2$ real multiplications and $1.5m^2$ real additions.

Both Zohar's algorithm [1] and the specialized algorithm developed in Section 3 make use of Phase 1 of the Trench algorithm [1]-[3]. Rather than review the results necessary for the development of Section 3, it is assumed that the reader is familiar with the work of Zohar [3].

2. Preliminaries

Since the techniques used in this paper are inherently related to those used by Zohar [1], an attempt is made to follow the same notational conventions. Greek letters are used for scalars, capital letters for square matrices, and lower-case letters for column matrices. Subscripts used on matrices are used to denote the number of elements in one column of the matrix.

Since Phase 1 of the Trench algorithm requires that all principal minors of L_m be nonzero, it is assumed that (1) has been normalized so that L_m has ones along its main diagonal.

3. The Specialized Algorithm

Consider the system of equations $L_m s_m^{-1} d_m$, where L_m is an mth order normalized Hermitian Toeplitz matrix and $d_m^* = \hat{d}_m$, so that d_m may be written as $\tilde{d}_m = [\xi_{\underline{m+1}} \cdots \xi_2 \xi_1 \xi_2^* \cdots \xi_{\underline{m+1}}^*]$ for m odd and

 $\frac{d}{m} = \begin{bmatrix} \xi_{m} & \cdots & \xi_{m} & \xi_{m}^{*} \\ \frac{m}{2} & 2 & 1 & 1 & \frac{m}{2} \end{bmatrix}$ for m even. For m even or odd we may write

 $\tilde{d}_{i+2} = \left[\xi \left[\frac{i+3}{2}\right]^{\tilde{d}_i} \left[\frac{\xi^*}{2}\right]\right]$, for i=1,2,...,m-2 where [x] denotes the largest

integer less than or equal to \mathbf{x} . The Hermitian Toeplitz nature of $\mathbf{L}_{\mathbf{m}}$ enables us to write

$$L_{i+2} = \begin{bmatrix} 1 & \tilde{r}_{i+1} \\ * & & \\ r_{i+1} & L_{i+1} \end{bmatrix} = \begin{bmatrix} L_{i+1} & \hat{r}_{i+1} \\ \tilde{r}_{i+1} & 1 \end{bmatrix}, \qquad (3)$$

where $r_{i+1} = [\rho_1 \rho_2 \cdots \rho_{i+1}] (0 \le i \le m-2)$. Clearly, (3) may be rewritten as

$$L_{i+2} = \begin{bmatrix} 1 & \tilde{r}_{i} & \hat{r}_{i+1} \\ r_{i}^{*} & \tilde{r}_{i+1}^{*} & 1 \end{bmatrix} .$$

Defining $L_{i+2} = d_{i+2} = d_{i+2} = d_{i+2} = d_{i+2} = d_{i+2} = d_{i+2}$, we have $L_{i+2} = d_{i+2} = d_{i+2$

where $\theta_i = \xi_{\frac{1+3}{2}} - r_i s_i$ and θ_i is an ixl column matrix of zeros.

Defining $B_{1+2}=L_{1+2}^{-1}$, we obtain

$$\mathbf{s}_{\mathbf{i}+2} = \begin{bmatrix} 0 \\ \mathbf{s}_{\mathbf{i}} \\ 0 \end{bmatrix} + \mathbf{B}_{\mathbf{i}+2} \begin{bmatrix} \theta_{\mathbf{i}} \\ 0_{\mathbf{i}} \\ \theta_{\mathbf{i}}^{*} \end{bmatrix}$$
 (4)

Since the inverse of a Hermitian persymmetric matrix is a Hermitian persymmetric matrix [3], B_{i+2} may be expressed in the form

$$B_{i+2} = \lambda_{i+1}^{-1} \begin{bmatrix} 1 & \tilde{e}_{i+1} \\ * & e_{i+1} & M_{i+1} \end{bmatrix} = \lambda_{i+1}^{-1} \begin{bmatrix} P_{i+1} & \hat{e}_{i+1} \\ \hat{\lambda}_{*} & e_{i+1} & 1 \end{bmatrix} .$$

Letting $f_i = [I_i \ 0_i] \ e_{i+1}$, we may write

$$B_{i+2} = \lambda_{i+1}^{-1} \begin{bmatrix} 1 & \tilde{f}_{i} & \\ & \tilde{f}_{i} & \\ f_{i}^{*} & Q_{i} & \\ & \hat{e}_{i+1}^{*} & 1 \end{bmatrix} .$$
 (5)

Substituting (5) into (4) we obtain the result

$$\mathbf{s}_{\mathbf{i}+2} = \begin{bmatrix} 0 \\ \mathbf{s}_{\mathbf{i}} \\ 0 \end{bmatrix} + \lambda_{\mathbf{i}+1}^{-1} \theta_{\mathbf{i}} \left\{ \begin{bmatrix} 1 \\ \mathbf{s}_{\mathbf{i}+1}^{*} \\ \end{bmatrix} + \theta_{\mathbf{i}}^{*} \theta_{\mathbf{i}}^{-1} \begin{bmatrix} \hat{\mathbf{e}}_{\mathbf{i}+1} \\ 1 \end{bmatrix} \right\}. \quad (6)$$

In order to make use of this result, we apply the recursive relationships for Phase 1 of the Trench algorithm [1]:

Initial values:
$$e_1 = -\rho_1$$
, $\lambda_1 = 1 - |\rho_1|^2$

Recursive relationships: $\eta_i = -\rho_{i+1} - \hat{e}_i \hat{r}_i$,

$$\mathbf{e_{i+1}} = \begin{bmatrix} \mathbf{e_i} + \eta_i \lambda_i^{-1} & \hat{\mathbf{e_i}}^* \\ & & \\$$

Finally, Phase 1 of the Trench algorithm and (6) may be combined by noting that

$$\mathbf{s}_{1}^{=} \,\, \boldsymbol{\xi}_{1} \tag{7}$$

and

$$s_{2}=(1-|\rho_{1}|^{2})^{-1} \begin{bmatrix} \xi_{1} & -\rho_{1} & \xi_{1}^{*} \\ \xi_{1}^{*} & -\rho_{1}^{*} & \xi_{1} \end{bmatrix} . \tag{8}$$

An immediate consequence of (6), (7), and (8) is that $s_{1+2}^*=\hat{s}_{1+2}$ since λ_{i+1} is real-valued. Consequently, there are two sources of increased computational speed in the specialized algorithm: (1) s_{1+2} need only be computed for $i=1,3,5,\cdots,m-2$ when m is odd and for $i=2,4,6,\cdots,m-2$ when m is even, and (ii) approximately half $([\frac{i+3}{2}])$ of the elements of s_{1+2} need to be computed using (6), the remaining elements being obtained from the relationship $s_{1+2}^*=\hat{s}_{1+2}^*$. The following is a summary of the algorithm.

PROBLEM FORMULATION:
$$L_{m}s_{m}-d_{m}, L_{m}=\begin{bmatrix} 1 & \tilde{r}_{m-1} \\ & & \\ r_{m-1} & L_{m-1} \end{bmatrix}$$
,

$$r_i = [\rho_1 \rho_2 \cdots \rho_i] \quad (1 \le i \le m-1),$$

$$d_{1+2} = \left[\frac{\xi}{2}\right] d_{1} \xi^{*} \left[\frac{1+3}{2}\right] , s_{m} = ?$$

Initial values: $e_1 = -\rho_1$, $\lambda_1 = 1 - |\rho_1|^2$,

$$s_1 = \xi_1, s_2 = \overline{\lambda}_1^1$$

$$\begin{bmatrix} \xi_1 - \rho_1, \xi_1^* \\ \xi_1 - \rho_1^*, \xi_1 \end{bmatrix}$$

Recursive relations: Compute η_i , e_{i+1} , and λ_{i+1} for $i=1,2,\cdots$, m-2. Compute θ_i and s_{i+2} for $i=1,3,5,\cdots$, m-2 for m odd and $i=2,4,6,\cdots$, m-2 for m even.

$$\mathbf{e}_{i+1} = \begin{bmatrix} \mathbf{e}_{i} + \mathbf{n}_{i} \lambda_{i}^{-1} \hat{\mathbf{e}}_{i}^{*} \\ \mathbf{n}_{i} \lambda_{i}^{-1} \end{bmatrix}$$

$$\lambda_{i+1} = \lambda_i - |n_i|^2 \lambda_i^{-1}$$

$$\theta_{\mathbf{i}}^{=\xi} [\frac{\mathbf{i}+3}{2}]^{-\tilde{\mathbf{r}}_{\mathbf{i}}} \mathbf{s}_{\mathbf{i}}$$

$$\mathbf{s_{i+2}} = \begin{bmatrix} \mathbf{0} \\ \mathbf{s_i} \\ \mathbf{0} \end{bmatrix} + \lambda_{i+1}^{-1} \theta_i \begin{bmatrix} \mathbf{1} \\ \mathbf{e_{i+1}} \\ \mathbf{e_{i+1}} \end{bmatrix} + \theta_i^{\star} \theta_i^{-1} \begin{bmatrix} \hat{\mathbf{e}} \\ \mathbf{e_{i+1}} \\ 1 \end{bmatrix}$$

Making use of the fact that only $[\frac{1+3}{2}]$ elements of s_{1+2} need be computed, the above algorithm requires approximately $1.5m^2$ additions and $1.5m^2$ multiplications for the solution of s_m . This compares with $2m^2$ for the Hermitian case of Zohar's algorithm [1].

In case L_m , d_m (and hence s_m) are real, an even further reduction in computational requirements results. For this case (6) may be rewritten as

$$\mathbf{s}_{\mathbf{i}+2} = \begin{bmatrix} 0 \\ \mathbf{s}_{\mathbf{i}} \\ 0 \end{bmatrix} + \lambda_{\mathbf{i}+1}^{-1} \ \theta_{\mathbf{i}} \left\{ \begin{bmatrix} 1 \\ \mathbf{e}_{\mathbf{i}+1} \end{bmatrix} + \begin{bmatrix} \hat{\mathbf{e}}_{\mathbf{i}+1} \\ 1 \end{bmatrix} \right\} , \quad (9)$$

and the computation of $r_i s_i$ in the expression for θ_i may be computed as

$$r_{i}s_{i} = \sum_{\ell=1}^{1/2} (s_{i})_{\ell} (\rho_{\ell} + \rho_{i+1-\ell})$$
(10)

for i even and

for i odd. Making use of these expressions, the specialized algorithm requires approximately $1.5m^2$ additions and $1.25m^2$ multiplications. A slightly different form of (9) can be easily obtained as

$$\mathbf{s}_{\mathbf{i}+2} = \begin{bmatrix} 0 \\ \mathbf{s}_{\mathbf{i}} \\ 0 \end{bmatrix} + \frac{\theta_{\mathbf{i}}}{\lambda_{\mathbf{i}} - \eta_{\mathbf{i}}} \begin{bmatrix} 1 \\ e_{\mathbf{i}} + \hat{e}_{\mathbf{i}} \\ 1 \end{bmatrix} . \tag{12}$$

This final expression (12) is slightly more efficient than (9). A FORTRAN routine for the specialized algorithm making use of (10)-(12) is presented in [5].

EXAMPLE. Let $\rho_1 = (i+1)^{-1}$ for $i=1,2,\cdots$, m-1 and $\xi_1 = i^{-1}$, for $i=1,2,\cdots$, $[\frac{m+1}{2}]$. A FORTRAN routine, called TPSLV, based on the symmetric case of [1] was written for a timing comparison with the FORTRAN routine, called SYMM, presented in [5]. The time needed (in seconds) for each routine to compute s_m for this example with ms $\{10,50,100,500\}$ is indicated in the following table.

<u>M</u>	TPSLV	SYMM
10	.005	.005
50	.089	.057
100	.343	.217
500	8.266	5.233

The above results, obtained on a CDC 6400 computer, agree with the computational considerations presented above.

4. Concluding Remarks

An algorithm has been developed for the solution of a specialized set of Toeplitz linear equations that arise in linear filtering applications. The savings in computational requirements of the new algorithm over the results of Zohar [1] are approximately 25% for the Hermitian case and 37.5% for the real case. Finally, it is noted that the techniques used in developing the specialized algorithm can indeed be applied to the general case treated by Zohar [1]; however, such a development results in an algorithm having no computational advantage over the generalized algorithm of [1].

REFERENCES

- ZOHAR, S. The solution of a Toeplitz set of linear equations.
 J. ACM 21, 2 (April 1974), 272-276.
- 2. TRENCH, W. F. An algorithm for the inversion of finite Toeplitz Matrices. J. SIAM 12, 3 (Sept. 1964), 515-522.
- ZOHAR, S. Toeplitz matrix inversion: The algorithm of W. F. Trench. J. ACM 16, 4 (Oct. 1969), 592-601.
- 4. FARDEN, D. C. and SCHARF, L. L. Statistical design of nonrecursive digital filters. *IEEE Trans. Acoustics, Speech, and Signal Processing.* ASSP-22, 3 (June 1974), 188-196.
- 5. FARDEN, D. C. and SCHARF, L. L. Authors' reply to "Comments on 'Statistical design of nonrecursive digital filters'." *IEEE Trans.* Acoustics, Speech, and Signal Processing. ASSP-23, 5 (Oct. 1975).

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
12			
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED		
The Solution of a Special Set of Hermitian	Technical Report		
Toeplitz Linear Equations	6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)		
David C. Farden	N00014-75-C-0518		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Department of Electrical Engineering			
Colorado State University Fort Collins, CO 80523			
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE		
Office of Naval Research, Code 436	August 1975		
Statistics and Probability Branch	13. NUMBER OF PAGES		
Arlington, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)		
	Unclassified		
	15. DECLASSIFICATION DOWNGRADING		
16. DISTRIBUTION STATEMENT (of this Report)			
Approved for public release; distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)			
Linear algebra; Linear equations; Toeplitz matrix; Computer programming.			
sub m			
The solution of a set of m linear equations L s =d, where L is an mth			
order Hermitian Toeplitz matrix and the elements of d possess a Hermitian			
annutry to considered. A specialized algorithm is developed for this case			
which solves for a in approximately 1.5m2 Toperations, whereas the Hermitian			
ment pa			
case of an algorithm developed by Zohar solves for s in approximately 2m2			

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20.

operations. An operation is used here to denote one addition and one multiplication. A further reduction in computational requirements is shown in case L and d are real. As with Zohar's algorithm, the specialized algorithm requires that all principal minors of I be nonzero.

sul m

Unclassified

8-25-75

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)